Securing Single Page Applications

Philippe De Ryck — iMinds-DistriNet, KU Leuven
philippe.deryck@cs.kuleuven.be

—— SecureApplication 4B
Uisiriet el Development “<am

Jp®iMinds | CRTEEE STREWS secappdev.org

About Me - Philippe De Ryck

= Postdoctoral Researcher @ DistriNet (KU Leuven)
= Focus on (client-side) Web security

= Responsible for the Web Security training program
= Dissemination of knowledge and research results
= Target audiences include industry and researchers

= Main author of the Primer on Client-Side Web Security
= 7 attacker models, broken down in 10 capabilities
= 13 attacks and their countermeasures
= Qverview of security best practices

DistriNel))(

ppwmiMinds EEEEEN STREWS

Philippe De Ryck
Lieven [)esmet

" Primer on Client-
| Side Web Security
T

Traditional Web Applications

Create New Task

Description: [__Cooking | POST newItem.php Parse request

Deadline: | 25/02/2015 |

Add to List J Store data

Retrieve all data

Overview
beadline Task Generate HTML
25/02/2015 Cooking <html>
30/03/2015 B-day party Send response
</html>
Add New |
DistriNet 3

Traditional Web Applications

Create New Task

Description: | Cooking)

Deadline: | 25/02/2015 |

Parse request

Add to List J Store data

Retrieve all data

Overview

Generate HTML

* Deadline w Task
30/03/2015 B-day party
25/02/2015 Cooking

Send response

Add New J GET sortyBy?col=Task

<table> Sorting API

DistriNet </table> .
ppmiMinds I

Single Page Applications

Overview
Parse request
Deadline w7 Task POST /items/
30/03/2015 B-day party
25/02/2015 Cooking ox Store data
Add New | Send response
DistriNet 5

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= |n combination with a stateless API

= [njection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote APl access
= Unintentional through CSRF, and intentional using CORS

DistriNet 5
LAY T IRSN o euven |

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= |n combination with a stateless API

= [njection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote APl access
= Unintentional through CSRF, and intentional using CORS

DistriNet .
LAY T IRSN o euven |

What’s behind a Single Page Application

~ https://items.example.com
=4

Create New Task

Description: | Cooking)

Deadline: | 25/02/2015 |}

Add to List J

Overview

Vv Deadline Task
25/02/2015 Cooking
30/03/2015 B-day party

Show completed tasks J

AngularJS routing

$SrouteProvider.when('/overview',6 {
templateUrl: ’'overview.html’,
controller: ‘OverviewCtrl’

}) .

SrouteProvider.when ('/completed'’,

{
templateUrl: ’'completed.html’,
controller: ‘CompletedCtrl’

})

DistriNet

https://items.example.com/#/completed

What’s behind a Single Page Application

https://items.example.com

<html ng-app>
<div ng-controller="NewTaskCtrl”>

</div>

<div ng-view>
</div>

DistriNet

AngularJS controllers

myApp.controller (‘CompletedCtrl’,
[‘$Sscope’, function ($scope) {
S$Sscope.completed = ..

1) 7

AngulardS templates

<h3>Completed Tasks</h3>

<1li ng-repeat=“task in completed”>

{{task.deadline}} {{task.descr}}
</1li>

What’s behind a Single Page Application

= The backend of an SPA has three general responsibilities
= Serve static application files
= Provide access to the business logic through an API
= Persistent data storage

= Frontend and backend are completely decoupled

= HTTP is the transport mechanism between both
= RESTful APl is a good match for this scenario

= Decoupled backend needs to stand on its own
= Validate data
= Enforce workflows

DistriNet

10

What’s behind a Single Page Application

Route

/api/bears
/api/bears
/api/bears/:bear_id
/api/bears/:bear_id

/api/bears/:bear_id

DistriNet

HTTP Verb
GET

POST

GET

PUT

DELETE

Description

Get all the bears.

Create a bear.

Get a single bear.

Update a bear with new info.

Delete a bear.

weinnis R https.//scotch.io/tutorials/build-a-restful-api-using-node-and-express-4

11

What’s behind a Single Page Application

= Properties of a RESTful API
= Separation of concern between client and server
= Stateless on the server-side
= Clear caching decisions (yes or no)
= Uniform interface

= Many concrete implementations available
= Heavyweight enterprise frameworks (e.g. Java, .NET)
= Lightweight JavaScript tools (e.g. NodeJS)
= Even more lightweight, REST-enabled databases (e.g. CouchDB)

DistriNet

meinnis ~ EER®m Architectural styles and the design of network-based software architectures, R. T. Fielding

12

What’s behind a Single Page Application
= Consuming a REST APl using XHR

Classic XHR

var url = “http://../api/bears/0”
var xhr = new XMLHttpRequest() ;
xhr.open ("DELETE", url, true);
xhr.onreadystatechange = function () {
if (xhr.readyState == 4) {
if (xhr.status == 200) {
//Bye bye bear 0
}
}

xhr.send() ;

DistriNet

AngulardS $resource

var api = $resource
("http://../api/bears/:id"”)

api.$delete({id: 0},
function(v, h) { /* success */ },
function(res) { /* error */ }

) ;

13

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= |n combination with a stateless API

= [njection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote APl access
= Unintentional through CSRF, and intentional using CORS

DistriNet 14
LAY T IRSN o euven |

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= In combination with a stateless API

= [njection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote APl access
= Unintentional through CSRF, and intentional using CORS

DistriNet 15
LAY T IRSN o euven |

Server-Side Session Management

Go to standaard.be
Hello stranger
® Login as Philippe

Hello Philippe
® Show unread news

Unread news for Philippe

Go to standaard.be

Hello stranger
Login as NotPhilippe
Hello NotPhilippe

B B

DistriNet

Jp®iMinds | CRTEEE

standaard.be

® Ba99a4dle8f496

Logged in: fahee
User: Philippe

® Z2ad3e9f78bc808

Logged in: faihee
User: NotPhilippe

16

Properties of Server-Side Sessions

= Session information stored at server-side
= Requires a stateful server-side API
= Difficult in load balancing scenarios

= Server has full control over sessions
= Keep track of active sessions
= |nvalidate sessions that have expired

= Session identifier acts as a bearer token
= Adequate security measures should be in place

DistriNet

17

Client-Side Session Management

DistriNet

Go to standaard.be
Hello stranger
Login as Philippe
Hello Philippe

B BBS

Show unread news
Unread news for Philippe

Go to standaard.be
Hello stranger

Login as NotPhilippe
Hello NotPhilippe

BB D

9q° pieepuels

&

&

Logged in: fahee
User: Philippe

Logged in: faiee
User: NotPhilippe

Properties of Client-Side Sessions

= Session information generated at server-side
= But stored within the browser at the client-side
= Server-side APl becomes stateless

= Server |loses a level of control over sessions
= Hard to keep track of active sessions
= Session expiration requires interaction with the client

= Entire session object is transmitted to the client
= Also acts as a bearer token, so protect adequately
= Client can inspect and manipulate session object

DistriNet

19

Protecting Client-Side Session Data
{

Store a minimal amount of data user: Bob,
isAdmin: false,
Prevent client-side manipulation expires: 2015/02/28

. . }
= Server signs the session data

= Server verifies signature when receiving session data

Prevent continued use of stale sessions
= Include expiration date in session state and verify when receiving

If desired, prevent client-side inspection of data
= Encrypt the session state before sending to the client

DistriNel
ppwiMinds | CNTEEEE 20

Client-Side Sessions — Cookie Example

= Session state stored in traditional cookies
= State stored as base64 encoded JSON data
= Server-generated signature stored in additional cookie
= Browser attaches session state to each request

= Shares all advantages and disadvantages of cookies
= Available throughout the browser

= Compatible with cross-origin requests and CORS
- But can lead to Cross-Site Request Forgery (CSRF)

* |mplemented by cookie-session for express (Node.JS)

DistriNet

21

Client-Side Sessions — JWT Example

= Session state encoded as a JSSON Web Token

= Base64 encoded JSON data
= Three sections: header, payload and signature
eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJI9. eydpc3MiOiJzZWNhcHBkZXYub3JnIiwiZXhwI

joxNDI1IMDc4MDAWMDAwLCJuYW11IjoicGhpbGlwcGUiLCJIJhZGlpbiI6dHJ1ZX0.uwigNRNPSuH
WXskdlkOd9FmUnnEfallpEDpVi GfO06E

{ { HMACSHAZ256 (
"alg": "HS256", "iss'": "secappdev.org'”, base64UrlEncode (header)
"typ'": "JWT" "exp'': 1425078000000, + "." 4+
} "name'": "philippe", base64UrlEncode (payload),
"admin'": true ‘mySecret”
})
DistriNet 29

Jp®iMinds | CRTEEE

Client-Side Sessions — JWT Example

= Session state encoded as a JSON Web Token
= Base64 encoded JSON data
= Three sections: header, payload and signature
= Currently draft spec at IETF

= Token needs to be attached to every request

= Configure client-side app to send it in the Authorization header
* Prevents CSRF attacks, but requires CORS preflights

= Include as part of the request (query parameter, form data)
» Clutters log files and URLs, but useful for out-of-browser requests

= Numerous libraries available (e.g. express-jwt)
DistriNet

23

Handling Authentication and Authorization

= REST API uses current state for authorization decisions

= Decision reflected in HT TP response code
- 200 - OK
* 401 — Authentication required
* 403 — Permission denied

= Handle authentication and authorization in client-side app
= Specify in client-side router when authentication is required
= Intercept incoming 401 responses and trigger

= Implement modal login dialog and reroute upon result
» Clean separation of authentication logic

DistriNel
LAY T IRSN o euven | 24

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= |n combination with a stateless API

= [njection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote APl access
= Unintentional through CSRF, and intentional using CORS

DistriNel
LAY T IRSN o euven | 25

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= |n combination with a stateless API

= Injection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote APl access
= Unintentional through CSRF, and intentional using CORS

DistriNet

LAY T IRSN o euven | 26

Traditional XSS Attacks

= Different types of script injection
= Persistent: stored data used in the response
= Reflected: part of the URI used in the response
= DOM-based: data used by client-side scripts

REFLECTED XSS

http://www.example.com/search?g=<script>alert ('XSS’) ;</script>

<hl>You searched for<script>alert('XSS’),;</script></hl>

DistriNet

py@iMinds | 27

Mitigating XSS in SPAs

= SPA architectures make the client responsible for protection
= Server only provides data in a specific format

= Has no idea in which context this data will be used
« HTML, CSS, JS, ...

= Serious MVC frameworks offer good countermeasures
= AngulardS has Strict Contextual Escaping
= Ember.js does something similar
= Check your favorite framework for this crucial requirement!

DistriNet

LAY T IRSN o euven | 28

XSS Mitigation in AngularJS

SCRIPT TEMPLATE

x = “javascript:alert(1l)”

GENERATED CODE

DistriNel
LAY T IRSN o euven | 29

XSS Mitigation in AngularJS

SCRIPT

‘ x = “” ‘

TEMPLATE

‘ <div ng-bind="x"></div> ‘

GENERATED CODE

<div>

</div>

DistriNel
py@iMinds | 30

XSS Mitigation in AngularJS

SCRIPT

‘ x = “” ‘

TEMPLATE

‘ <div ng-bind-html="x"></div> ‘

GENERATED CODE

Error: [$sce:unsafe] Attempting to use an
unsafe value in a safe context.

DistriNet 31
LAY T IRSN o euven |

XSS Mitigation in AngularJS

SCRIPT

‘ X = $sanitize (“") ‘

TEMPLATE

‘ <div ng-bind="x"></div> ‘

GENERATED CODE

<div>

</div>

DistriNel
LAY T IRSN o euven | 32

XSS Mitigation in AngularJS

SCRIPT

‘ X = $sanitize (“") ‘

TEMPLATE

‘ <div ng-bind-html="x"></div> ‘

GENERATED CODE

<div>

</div>

DistriNel
py@iMinds | 33

XSS Mitigation in AngularJS

SCRIPT

‘ X = S$sce.trustAsHtml (“<img src=‘a’ ‘
onerror=‘alert(1l)’'>")

TEMPLATE

‘ <div ng-bind="x"></div> ‘

GENERATED CODE

<div>

</div>

DistriNel
LAY T IRSN o euven | 34

XSS Mitigation in AngularJS

SCRIPT

‘ X = S$sce.trustAsHtml (“<img src=‘a’ ‘
onerror=‘alert(1l)’'>")

TEMPLATE

‘ <div ng-bind-html="x"></div> ‘

GENERATED CODE

<div>
;
</div>

DistriNel
py@iMinds | 35

XSS Mitigation in AngularJS

SCRIPT
‘ x = Ssce.trustAsHtml (“'<ima src=‘a’
TEMPLATE The page at localhost:3000 says:
\ 2 i
GENERATEL
<div>
;
</div>
DistriNet 36

How

= Oft

SPA Frameworks Change the Game

= JavaScript MVC frameworks change how the DOM works
= Extensions through elements, attributes, etc.
= New interfaces

en in combination with templating

<graph class="visitor-graph">

<axis
<axis
<line
<line
<line
</graph>

DistriNet

position="1left"></axis>

position="bottom"></axis>

name="typical-week" line-data="model.series.typicalWeek"></line>
name="this-week" line-data="model.series.thisWeek"></line>
name="last-week" line-data="model.series.lastWeek"></line>

37

How SPA Frameworks Change the Game

= JavaScript MVC frameworks change how the DOM works
= Extensions through elements, attributes, etc.
= New interfaces

= Often in combination with templating

= This behavior is enabled by framework processing in JS
= Highly dependent on String-to-Code capabilities

= Most common examples: eval() and the Function constructor
= Butisn't eval() evil?

DistriNet

38

Mustache Security {{ }}

= Project dedicated to JS MVC security pitfalls
= Assuming there is an injection vector
= Assuming there is conventional XSS filtering in place
= What can an attacker do?

= New behavior often breaks existing security assumptions
= Bypass currently used security mechanisms
= Script injection possible whenever a data attribute is allowed

DistriNet 39

meinns XM /mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

Mustache Security Examples

<script src=“knockout-2.3.0.js"></script>
<div data-bind="x:alert(l)" />
<script>
ko.applyBindings () ;
</script>

DistriNet 40

meinns XM /mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

Mustache Security Examples

<script sr
<div data-
<script>

The page at localhost:3000 says:
1

¢

ko . OK |

</script>

DistriNet

meinns XM /mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

41

Mustache Security Examples

<script src=“jquery-1.7.1.min.js"></script>
<script src=“kendo.all.min.js"></script>
<div id="x"># alert(l) #</div>
<script>
var template = kendo.template ($("#x") .html());
var tasks = [{ id: 1}];

var dataSource = new kendo.data.DataSource({ data: tasks });

dataSource.bind("change'", function(e) {
var html = kendo.render (template, this.view())
}) s
dataSource.read () ;
</script>

DistriNet

meinns XM /mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

42

Mustache Security Examples

<script src=“jquery-1.7.1.min.js"></script>
<script src=“kendo.all.min.js"></script>
<div id="x">

<script>
var temple The page at localhost:3000 says:
var tasks ‘ 1
var dataSc
dataSource
var html
}) s
dataSource.read() ;
</script>

DistriNet

meinns XM /mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

43

Mustache Security Examples

<script src=“angularl.l.5.min.js"></script>
<div class="ng-app">

{ {constructor.constructor('alert(1l) ') () }}
</div>

DistriNet

meinns XM /mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

24

Mustache Security Examples

<script srcs The page at localhost:3000 says:
<div class=' " 1

{ {constructc

</div> E OK }

DistriNet

meinns XM /mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

45

Content Security Policy

= Declares content restrictions on Web resources

= Specifies allowed sources of included content
- Images, scripts, frames, ...

= Specifies allowed destinations for certain actions
* Forms, XHR, WebSockets, ...

= Disables inline scripts and styles by default
INLINE SCRIPTS

()

Content-Security-Policy: default-src: ‘self’;

http://www.example.com/search?g=<script>alert (‘'XSS’) ;</script>

<hl>You searched for<script>alert(‘'XSS’),;</script></hl>

J

DistriNet

LAY T IRSN o euven | 46

Content Security Policy

= Declares content restrictions on Web resources

= Specifies allowed sources of included content
- Images, scripts, frames, ...

= Specifies allowed destinations for certain actions
* Forms, XHR, WebSockets, ...

= Disables inline scripts and styles by default
= Prevents the use of string-to-code functionality

= CSP is meant to be a second line of defense against XSS

DistriNet

LAY T IRSN o euven | 47

CSP and JS MVC Frameworks

= Default behavior of MVC frameworks is not CSP compatible
= Dependent on string-to-code functionality
= Requires unsafe-eval in CSP, which kind of misses the point

= Some frameworks offer a special CSP mode
= AngulardS can easily be made CSP compliant
= Ember.js templates can be compiled to be CSP compliant
= Other frameworks provide addons or custom binding providers

DistriNel
LAY T IRSN o euven | 48

<html ng-app ng-csp> .. </html>

= CSP prevents inline scripts from running ...

<html ng-app ng-csp>
<body ng-controller="MyController">
<hl onclick="alert (0)">Click me</hl>
<hl ng-click="$event.view.alert(l)">Click me</hl>
<hl ng-mouseover="S$event.target.ownerDocument.defaultView.alert (2)"”>
Hover me
</hl>
</body>
</html>

DistriNet 49

meinns XM /mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

<html ng-app ng-csp> .. </html>

Refused to execute inline event handler because it wviolates
the following Content Security Policy directive: "script-src

'self' http «//adaxwy annalaanie ~ram 'mnanca-hlah!'" K1 ther the
'unsafe—in1w,,Ai.Mmm””.%w.ﬁ..MmW..uﬂ”_ui_“Mm__Mfmw nonce
' 2
—— (V.ESES.? The page at localhost:3000 says: K -
<hl ng-clicks= ' 1
<hl ng-mousec
Hover me
</h1> The page at localhost:3000 says:
</body>
</html> — . | 2
DistriNel I
weinns [/nustache-security, Mario H

= So how does angular process event handlers?
= Parse ‘ng’-attributes
= Create anonymous functions, connected with events
= Wait for event handler to fire

Selement.onclick = function (Sevent) {
Sevent[‘view’][‘alert’] ('1’)

}
= Technically, not inline, and no eval()

= CSP 1.2.x has a strong sandbox

= No more references to dangerous objects (e.g. window)

DistriNet

meinns XM /mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/ 01

The Importance of CSP Compliance

= CSP is promising, but hard to apply in legacy applications
= Adoption on new applications is slowly rising

= Google strongly pushes CSP adoption

= Chrome extensions must use CSP

* And unsafe-inline will have no effect (unsafe-eval can be used)
= Chrome packaged apps must use CSP

« Default policy can not be relaxed

* Only local content is allowed (except media files)
» Qutgoing connections are allowed

DistriNet

52

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= |n combination with a stateless API

= |njection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote APl access
= Unintentional through CSRF, and intentional using CORS

DistriNel
LAY T IRSN o euven | 53

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= |n combination with a stateless API

= [njection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote API access
= Unintentional through CSRF, and intentional using CORS

DistriNet

LAY T IRSN o euven | 54

Remote API Access

= Butisn’t every access remote access?
= Yes, but the answer lies in the origins
= Same-origin access has never been restricted
= Cross-origin access is more interesting

= Securing an AP

= Preventing unintentional cross-origin access through CSRF
= Enabling intentional cross-origin access

DistriNel
py@iMinds | 55

Cross-Site Request Forgery

= Attacker is able to execute requests in the victim’s session
= Side-effect of ambient authority of session cookies

Login as Philippe
® Hello Philippe
@ Show news

Latest articles news-api .com

O Change email address
Sure thing, Philippe
Show funny cat pictures

< Funny cat pictures lolcats.com

WWwWwW

DistriNe
P® iMinds 56

Mitigating Cross-Site Request Forgery

= Mitigation techniqgues need to be explicitly present
= Token-based approaches
= Origin header

_
@ TOKEN-BASED APPROACH

Html b N
example.com

<form action=%“submit.php”>
<input type=“hidden” name="“token”
value=“qasfj8jl2adsjadu2223” />

</form>

. J

DistriNel
LAY T IRSN o euven | 57

Transparent CSRF Tokens

= Hidden tokens strongly depend on HTML
= Less compatible with JavaScript code

= Solution: transparent tokens using cookies and headers

First request
Set-Cookie: session=..
Set-Cookie: CSRF-Token=123

Cookie: session=.. example.com
Cookie: CSRF-Token=123
CSRF-Token: 123

Only the application can copy
DistriNet cookie value into header
pwiMinds |CEIEEED

58

Enabling CSRF Protection

Express

var csrf = require('csurf');

app.use(csrf()) ;

app.use("/", function(req, res, next) ({
res.cookie ('XSRF-TOKEN', req.csrfToken()) ;
next () ;

})

AngulardS

Enabled by default if cookie is present!

DistriNet

59

Legitimate APl Access

= How to get script-based access to cross-origin APls

XMLHttpRequest cannot load http://127.0.0.1:3000/. No
'Access-Control-Allow-Origin' header 1is present on the

requested resource. Origin 'http://localhost:3000' is
therefore not allowed access.

= CORS to the rescue

= Cross-Origin Resource Sharing (W3C Recommendation)
= Introduce additional security headers to enable cross-origin XHR
= Headers ensure that existing security assumptions are not broken

DistriNet

py@iMinds | 60

Legitimate APl Access
APIs that support CORS

DistriNet

Amazon S3

DBpedia Spotlight
Dropbox API
Facebook Graph API
Flickr API

FourSquare API
Google APIs

Google Cloud Storage
GitHub v3 API
MediaWiki API
prefix.cc
PublishMyData
sameAs

SoundCloud API
Spotify Lookup API
Sunlight Congress API
URIBurner

YouTube API (blog post)
doctape API

61

Brief Overview of CORS

GET http://api.example.com/articles/
Origin: http://standaard.be

JSON Response

g’r No specific CORS headers E?
) [\
a. 5
\) -
ﬁ XMLHttpRequest cannot load ®
Q. http://127.0.0.1:3000/. No 'Access- Q
o Control-Allow-Origin' header is present on g
® the requested resource. Origin
'http://localhost:3000' is therefore not
allowed access.
DistriNet 62

Brief Overview of CORS

GET http://api.example.com/articles/
Origin: http://standaard.be

JSON Response

(/) =1
ct Access-Control-Allow-Origin: http://standaard.be]
[\ [\
o) =]
Q. O
\) =
(1] ()
H .

Q. Q
. (0]
o2 =)
O

DistriNet 63

Brief Overview of CORS

DELETE http://api.example/com/articles/5

Origin: http://standaard.be
200 OK, happy to comply, delete it all!!

/)] =1
ct "
: :
Q. O
\) Legacy server doesn’t check for -
V] .. . O
K the origin header, and simply .

Q. deletes the article! a
g =

CORS does not allow this
DistriNet 64

Brief Overview of CORS

OPTIONS http://api.example.com/articles/5

Origin: http://standaard.be
Access-Control-Request-Method: DELETE

0 200 ok =1
ct »
g Access-Control-Allow-Origin: http://standaard.be g
g. Access-Control-Allow-Methods: GET, POST, DELETE Tl
(1] ()
3‘ DELETE http://api.example.com/articles/5 0
. (0]
8‘ Origin: http://standaard.be 3

200 ok

Access-Control-Allow-Origin: http://standaard.be

DistriNet 65

Jp®iMinds | CRTEEE

CORS-enabled REST APIs

= Server: add appropriate response headers

var cors = require ('express-cors') ;
app - use (

cors({ allowedOrigins: ['http://127.0.0.1:3000']1 }));

= Client: Do we really have to deal with 6 new response
headers?

= No!
= Simply consume the API like a same-origin AP
- If the server grants your app access, the browser will take care of it

DistriNet

py@iMinds | 66

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= |n combination with a stateless API

= [njection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote API| access
= Unintentional through CSRF, and intentional using CORS

DistriNel
LAY T IRSN o euven | 67

= The architecture of a single page application
= Moving stuff from the server to the client

= Authentication and authorization
= |n combination with a stateless API

= [njection vulnerabilities and countermeasures
= Getting rid of XSS, if you do it right

= Remote APl access
= Unintentional through CSRF, and intentional using CORS

DistriNel
LAY T IRSN o euven | 68

= Single page applications are the next big thing
= Great user experience, clear separation of concerns

= Their architecture empowers the client-side
= But with great power there must also come great responsibility

= Security features are available in software
= Choose wisely, and deploy vigorously

DistriNet

py@iMinds | 69

Securing Single Page Applications

Philippe De Ryck
philippe.deryck@cs.kuleuven.be

DistriNet SecureApplication

AD
Development "
@ iminds |EREREN psecappd eeeee g -

