
Securing Single Page Applications
Philippe De Ryck – iMinds-DistriNet, KU Leuven
philippe.deryck@cs.kuleuven.be

About Me – Philippe De Ryck

2

§  Postdoctoral Researcher @ DistriNet (KU Leuven)
§  Focus on (client-side) Web security

§  Responsible for the Web Security training program
§  Dissemination of knowledge and research results
§  Target audiences include industry and researchers

§  Main author of the Primer on Client-Side Web Security
§  7 attacker models, broken down in 10 capabilities
§  13 attacks and their countermeasures
§  Overview of security best practices

Traditional Web Applications

3

POST newItem.php Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

25/02/2015

Overview

30/03/2015
Cooking
B-day party

Parse request

Store data

Retrieve all data

Generate HTML

Send response

Deadline Task

Add New

<html>
 …

</html>

Traditional Web Applications

4

GET sortyBy?col=Task

Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

25/02/2015

Overview

30/03/2015
Cooking
B-day party

Parse request

Store data

Retrieve all data

Generate HTML

Send response

Deadline Task

Add New
Sorting API

25/02/2015
30/03/2015

Cooking
B-day party

Deadline Task

<table>
…

</table>

Single Page Applications

5

POST /items/ Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

Parse request

Store data

Send response

25/02/2015

Overview

30/03/2015
Cooking
B-day party

Deadline Task

Add New

25/02/2015
30/03/2015

Cooking
B-day party

Deadline Task

OK

Outline

6

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

Outline

7

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

What’s behind a Single Page Application

8

Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

Overview

30/03/2015 B-day party
Deadline Task

25/02/2015
30/03/2015

Cooking
B-day party

Deadline Task

Show completed tasks

https://items.example.com

https://items.example.com/#/completed https://items.example.com/#/completed

$routeProvider.when('/overview', {
 templateUrl: ’overview.html’,
 controller: ‘OverviewCtrl’
}).
$routeProvider.when('/completed',
{
 templateUrl: ’completed.html’,
 controller: ‘CompletedCtrl’
});

AngularJS routing

What’s behind a Single Page Application

9

Description:

Deadline:

Add to List

Create New Task

Cooking

25/02/2015

Completed Tasks

31/12/2014
01/01/2015

Party
Recover

Deadline Task

Show Overview

https://items.example.com

<html ng-app>

 <div ng-controller=“NewTaskCtrl”>
 …
 </div>

 <div ng-view>
 </div>

</html

myApp.controller(‘CompletedCtrl’,
 [‘$scope’, function($scope) {
 $scope.completed = …
}]);

AngularJS controllers

<h3>Completed Tasks</h3>

 <li ng-repeat=“task in completed”>
 {{task.deadline}} {{task.descr}}

AngularJS templates

What’s behind a Single Page Application

10

§  The backend of an SPA has three general responsibilities
§  Serve static application files
§  Provide access to the business logic through an API
§  Persistent data storage

§  Frontend and backend are completely decoupled
§  HTTP is the transport mechanism between both
§  RESTful API is a good match for this scenario

§  Decoupled backend needs to stand on its own
§  Validate data
§  Enforce workflows

What’s behind a Single Page Application

11 https://scotch.io/tutorials/build-a-restful-api-using-node-and-express-4

What’s behind a Single Page Application

12

§  Properties of a RESTful API
§  Separation of concern between client and server
§  Stateless on the server-side
§  Clear caching decisions (yes or no)
§  Uniform interface

§  Many concrete implementations available
§  Heavyweight enterprise frameworks (e.g. Java, .NET)
§  Lightweight JavaScript tools (e.g. NodeJS)
§  Even more lightweight, REST-enabled databases (e.g. CouchDB)

Architectural styles and the design of network-based software architectures, R. T. Fielding

What’s behind a Single Page Application

13

§  Consuming a REST API using XHR

var url = ”http://…/api/bears/0”
var xhr = new XMLHttpRequest();
xhr.open("DELETE", url, true);
xhr.onreadystatechange = function () {
 if (xhr.readyState == 4) {
 if (xhr.status == 200) {

 //Bye bye bear 0
 }

 }
}
xhr.send();

var api = $resource
 (”http://…/api/bears/:id”)

api.$delete({id: 0},
 function(v, h) { /* success */ },
 function(res) { /* error */ }
);

Classic XHR AngularJS $resource

Outline

14

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

Outline

15

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

Server-Side Session Management

16

standaard.be

Show unread news
Unread news for Philippe

Go to standaard.be
Hello stranger

Login as Philippe
Hello Philippe

Logged_in: true
User: Philippe

3a99a4d1e8f496

Logged_in: true
User: NotPhilippe

7ad3e9f78bc808
Go to standaard.be

Hello stranger
Login as NotPhilippe
Hello NotPhilippe

Logged_in: false

Logged_in: false

1

2

Properties of Server-Side Sessions

17

§  Session information stored at server-side
§  Requires a stateful server-side API
§  Difficult in load balancing scenarios

§  Server has full control over sessions
§  Keep track of active sessions
§  Invalidate sessions that have expired

§  Session identifier acts as a bearer token
§  Adequate security measures should be in place

Client-Side Session Management

18

s
t
a
n
d
a
a
r
d
.
b
e

Show unread news
Unread news for Philippe

Go to standaard.be
Hello stranger

Login as Philippe
Hello Philippe

Logged_in: true
User: Philippe

Logged_in: true
User: NotPhilippe

Go to standaard.be
Hello stranger

Login as NotPhilippe
Hello NotPhilippe

Logged_in: false

Logged_in: false

Properties of Client-Side Sessions

19

§  Session information generated at server-side
§  But stored within the browser at the client-side
§  Server-side API becomes stateless

§  Server loses a level of control over sessions
§  Hard to keep track of active sessions
§  Session expiration requires interaction with the client

§  Entire session object is transmitted to the client
§  Also acts as a bearer token, so protect adequately
§  Client can inspect and manipulate session object

Protecting Client-Side Session Data

20

§  Store a minimal amount of data
§  Prevent client-side manipulation

§  Server signs the session data
§  Server verifies signature when receiving session data

§  Prevent continued use of stale sessions
§  Include expiration date in session state and verify when receiving

§  If desired, prevent client-side inspection of data
§  Encrypt the session state before sending to the client

{
 user: Bob,
 isAdmin: false,
 expires: 2015/02/28
}

Client-Side Sessions – Cookie Example

21

§  Session state stored in traditional cookies
§  State stored as base64 encoded JSON data
§  Server-generated signature stored in additional cookie
§  Browser attaches session state to each request

§  Shares all advantages and disadvantages of cookies
§  Available throughout the browser
§  Compatible with cross-origin requests and CORS

•  But can lead to Cross-Site Request Forgery (CSRF)

§  Implemented by cookie-session for express (Node.JS)

Client-Side Sessions – JWT Example

22

§  Session state encoded as a JSON Web Token
§  Base64 encoded JSON data
§  Three sections: header, payload and signature

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzZWNhcHBkZXYub3JnIiwiZXhwI
joxNDI1MDc4MDAwMDAwLCJuYW1lIjoicGhpbGlwcGUiLCJhZG1pbiI6dHJ1ZX0.uwigNRNPSuH
WXskd1kOd9FmUnnEfal1pEDpVi_Gf06E

{
 "alg": "HS256",
 "typ": "JWT"
}

{
 "iss": "secappdev.org",
 "exp": 1425078000000,
 "name": "philippe",
 "admin": true
}

HMACSHA256(
 base64UrlEncode(header)
 + "." +
 base64UrlEncode(payload),
 “mySecret”
)

Client-Side Sessions – JWT Example

23

§  Session state encoded as a JSON Web Token
§  Base64 encoded JSON data
§  Three sections: header, payload and signature
§  Currently draft spec at IETF

§  Token needs to be attached to every request
§  Configure client-side app to send it in the Authorization header

•  Prevents CSRF attacks, but requires CORS preflights
§  Include as part of the request (query parameter, form data)

•  Clutters log files and URLs, but useful for out-of-browser requests

§  Numerous libraries available (e.g. express-jwt)

Handling Authentication and Authorization

24

§  REST API uses current state for authorization decisions
§  Decision reflected in HTTP response code

•  200 – OK
•  401 – Authentication required
•  403 – Permission denied

§  Handle authentication and authorization in client-side app
§  Specify in client-side router when authentication is required
§  Intercept incoming 401 responses and trigger
§  Implement modal login dialog and reroute upon result

•  Clean separation of authentication logic

Show small
demo here?
ANGULAR

Outline

25

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

Outline

26

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

Traditional XSS Attacks

27

§  Different types of script injection
§  Persistent: stored data used in the response
§  Reflected: part of the URI used in the response
§  DOM-based: data used by client-side scripts

http://www.example.com/search?q=<script>alert(‘XSS’);</script>

 <h1>You searched for<script>alert(‘XSS’);</script></h1>

REFLECTED XSS

Mitigating XSS in SPAs

28

§  SPA architectures make the client responsible for protection
§  Server only provides data in a specific format
§  Has no idea in which context this data will be used

•  HTML, CSS, JS, …

§  Serious MVC frameworks offer good countermeasures
§  AngularJS has Strict Contextual Escaping
§  Ember.js does something similar
§  Check your favorite framework for this crucial requirement!

XSS Mitigation in AngularJS

29

x = “javascript:alert(1)”

SCRIPT

TEMPLATE

GENERATED CODE

XSS Mitigation in AngularJS

30

x = “”

SCRIPT

<div ng-bind=”x"></div>

TEMPLATE

<div>

</div>

GENERATED CODE

XSS Mitigation in AngularJS

31

x = “”

SCRIPT

<div ng-bind-html=”x"></div>

TEMPLATE

Error: [$sce:unsafe] Attempting to use an
unsafe value in a safe context.

GENERATED CODE

XSS Mitigation in AngularJS

32

x = $sanitize(“”)

SCRIPT

<div ng-bind=”x"></div>

TEMPLATE

<div>

</div>

GENERATED CODE

XSS Mitigation in AngularJS

33

x = $sanitize(“”)

SCRIPT

<div ng-bind-html=”x"></div>

TEMPLATE

<div>

</div>

GENERATED CODE

XSS Mitigation in AngularJS

34

x = $sce.trustAsHtml(“<img src=‘a’
onerror=‘alert(1)’>”)

SCRIPT

<div ng-bind=”x"></div>

TEMPLATE

<div>

</div>

GENERATED CODE

XSS Mitigation in AngularJS

35

x = $sce.trustAsHtml(“<img src=‘a’
onerror=‘alert(1)’>”)

SCRIPT

<div ng-bind-html=”x"></div>

TEMPLATE

<div>
 ;

</div>

GENERATED CODE

XSS Mitigation in AngularJS

36

x = $sce.trustAsHtml(“<img src=‘a’
onerror=‘alert(1)’>”)

SCRIPT

<div ng-bind-html=”x"></div>

TEMPLATE

<div>
 ;

</div>

GENERATED CODE

How SPA Frameworks Change the Game

37

§  JavaScript MVC frameworks change how the DOM works
§  Extensions through elements, attributes, etc.
§  New interfaces
§  Often in combination with templating

<graph class="visitor-graph">
 <axis position="left"></axis>
 <axis position="bottom"></axis>
 <line name="typical-week" line-data="model.series.typicalWeek"></line>
 <line name="this-week" line-data="model.series.thisWeek"></line>
 <line name="last-week" line-data="model.series.lastWeek"></line>
</graph>

How SPA Frameworks Change the Game

38

§  JavaScript MVC frameworks change how the DOM works
§  Extensions through elements, attributes, etc.
§  New interfaces
§  Often in combination with templating

§  This behavior is enabled by framework processing in JS
§  Highly dependent on String-to-Code capabilities
§  Most common examples: eval() and the Function constructor

§  But isn’t eval() evil?

Mustache Security {{ }}

39

§  Project dedicated to JS MVC security pitfalls
§  Assuming there is an injection vector
§  Assuming there is conventional XSS filtering in place
§  What can an attacker do?

§  New behavior often breaks existing security assumptions
§  Bypass currently used security mechanisms
§  Script injection possible whenever a data attribute is allowed

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

Mustache Security Examples

40

<script src=“knockout-2.3.0.js"></script>
<div data-bind="x:alert(1)" />
<script>
 ko.applyBindings();
</script>

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

Mustache Security Examples

41

<script src=“knockout-2.3.0.js"></script>
<div data-bind="x:alert(1)" />
<script>
 ko.applyBindings();
</script>

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

Mustache Security Examples

42

<script src=“jquery-1.7.1.min.js"></script>
<script src=“kendo.all.min.js"></script>
<div id="x"># alert(1) #</div>
<script>
 var template = kendo.template($("#x").html());
 var tasks = [{ id: 1}];
 var dataSource = new kendo.data.DataSource({ data: tasks });
 dataSource.bind("change", function(e) {
 var html = kendo.render(template, this.view());
 });
 dataSource.read();
</script>

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

Mustache Security Examples

43

<script src=“jquery-1.7.1.min.js"></script>
<script src=“kendo.all.min.js"></script>
<div id="x"># alert(1) #</div>
<script>
 var template = kendo.template($("#x").html());
 var tasks = [{ id: 1}];
 var dataSource = new kendo.data.DataSource({ data: tasks });
 dataSource.bind("change", function(e) {
 var html = kendo.render(template, this.view());
 });
 dataSource.read();
</script>

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

Mustache Security Examples

44

<script src=“angular1.1.5.min.js"></script>
<div class="ng-app">
{{constructor.constructor('alert(1)')()}}
</div>

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

Mustache Security Examples

45

<script src=“angular1.1.5.min.js"></script>
<div class="ng-app">
{{constructor.constructor('alert(1)')()}}
</div>

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

Content Security Policy

46

§  Declares content restrictions on Web resources
§  Specifies allowed sources of included content

•  Images, scripts, frames, …
§  Specifies allowed destinations for certain actions

•  Forms, XHR, WebSockets, …
§  Disables inline scripts and styles by default

 Content-Security-Policy: default-src: ‘self’;

http://www.example.com/search?q=<script>alert(‘XSS’);</script>

 <h1>You searched for<script>alert(‘XSS’);</script></h1>

INLINE SCRIPTS

Content Security Policy

47

§  Declares content restrictions on Web resources
§  Specifies allowed sources of included content

•  Images, scripts, frames, …
§  Specifies allowed destinations for certain actions

•  Forms, XHR, WebSockets, …
§  Disables inline scripts and styles by default
§  Prevents the use of string-to-code functionality

§  CSP is meant to be a second line of defense against XSS

CSP and JS MVC Frameworks

48

§  Default behavior of MVC frameworks is not CSP compatible
§  Dependent on string-to-code functionality
§  Requires unsafe-eval in CSP, which kind of misses the point

§  Some frameworks offer a special CSP mode
§  AngularJS can easily be made CSP compliant
§  Ember.js templates can be compiled to be CSP compliant
§  Other frameworks provide addons or custom binding providers

ng-csp

49

§  CSP prevents inline scripts from running …

<html ng-app ng-csp> … </html>

<html ng-app ng-csp>
 <body ng-controller="MyController">
 <h1 onclick="alert(0)">Click me</h1>
 <h1 ng-click="$event.view.alert(1)">Click me</h1>
 <h1 ng-mouseover="$event.target.ownerDocument.defaultView.alert(2)”>

 Hover me
 </h1>
 </body>
</html>

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

ng-csp

50

§  CSP prevents inline scripts from running …

<html ng-app ng-csp> … </html>

<html ng-app ng-csp>
 <body ng-controller="MyController">
 <h1 onclick="alert(0)">Click me</h1>
 <h1 ng-click="$event.view.alert(1)">Click me</h1>
 <h1 ng-mouseover="$event.target.ownerDocument.defaultView.alert(2)”>

 Hover me
 </h1>
 </body>
</html>

Refused to execute inline event handler because it violates
the following Content Security Policy directive: "script-src
'self' http://ajax.googleapis.com 'nonce-bleh'". Either the
'unsafe-inline' keyword, a hash ('sha256-...'), or a nonce

('nonce-...') is required to enable inline execution.

ng-csp

51

§  So how does angular process event handlers?
§  Parse ‘ng’-attributes
§  Create anonymous functions, connected with events
§  Wait for event handler to fire

§  Technically, not inline, and no eval()

§  CSP 1.2.x has a strong sandbox
§  No more references to dangerous objects (e.g. window)

$element.onclick = function($event) {
 $event[‘view’][‘alert’](‘1’)
}

mustache-security, Mario Heiderich - https://code.google.com/p/mustache-security/

The Importance of CSP Compliance

52

§  CSP is promising, but hard to apply in legacy applications
§  Adoption on new applications is slowly rising

§  Google strongly pushes CSP adoption
§  Chrome extensions must use CSP

•  And unsafe-inline will have no effect (unsafe-eval can be used)
§  Chrome packaged apps must use CSP

•  Default policy can not be relaxed
•  Only local content is allowed (except media files)
•  Outgoing connections are allowed

Outline

53

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

Outline

54

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

Remote API Access

55

§  But isn’t every access remote access?
§  Yes, but the answer lies in the origins
§  Same-origin access has never been restricted
§  Cross-origin access is more interesting

§  Securing an API
§  Preventing unintentional cross-origin access through CSRF
§  Enabling intentional cross-origin access

Cross-Site Request Forgery

56

§  Attacker is able to execute requests in the victim’s session
§  Side-effect of ambient authority of session cookies

news-api.com

lolcats.com

Login as Philippe
Hello Philippe

Show news
Latest articles

Show funny cat pictures
Funny cat pictures

Change email address
Sure thing, Philippe

Mitigating Cross-Site Request Forgery
§  Mitigation techniques need to be explicitly present

§  Token-based approaches
§  Origin header

57

example.com

<form action=“submit.php”>
 <input type=“hidden” name=“token”
 value=“qasfj8j12adsjadu2223” />
 …
</form>

TOKEN-BASED APPROACH

Transparent CSRF Tokens

58

§  Hidden tokens strongly depend on HTML
§  Less compatible with JavaScript code

§  Solution: transparent tokens using cookies and headers

example.com

First request

Set-Cookie: CSRF-Token=123
Set-Cookie: session=…

Cookie: session=…
Cookie: CSRF-Token=123
CSRF-Token: 123

Only the application can copy
cookie value into header

Enabling CSRF Protection

59

var csrf = require('csurf');
app.use(csrf());
app.use("/", function(req, res, next) {
 res.cookie('XSRF-TOKEN', req.csrfToken());
 next();
});

Express

AngularJS
Enabled by default if cookie is present!

Legitimate API Access

60

§  How to get script-based access to cross-origin APIs

§  CORS to the rescue
§  Cross-Origin Resource Sharing (W3C Recommendation)
§  Introduce additional security headers to enable cross-origin XHR
§  Headers ensure that existing security assumptions are not broken

XMLHttpRequest cannot load http://127.0.0.1:3000/. No
'Access-Control-Allow-Origin' header is present on the
requested resource. Origin 'http://localhost:3000' is

therefore not allowed access.

Legitimate API Access

61

Brief Overview of CORS

62

GET http://api.example.com/articles/

s
t
a
n
d
a
a
r
d
.
b
e

Origin: http://standaard.be

JSON Response

No specific CORS headers

E
x
a
m
p
l
e
.
c
o
m

XMLHttpRequest cannot load
http://127.0.0.1:3000/. No 'Access-

Control-Allow-Origin' header is present on
the requested resource. Origin

'http://localhost:3000' is therefore not
allowed access.

Brief Overview of CORS

63

GET http://api.example.com/articles/

s
t
a
n
d
a
a
r
d
.
b
e

Origin: http://standaard.be

JSON Response

Access-Control-Allow-Origin: http://standaard.be

E
x
a
m
p
l
e
.
c
o
m

Brief Overview of CORS

64

DELETE http://api.example/com/articles/5

s
t
a
n
d
a
a
r
d
.
b
e

Origin: http://standaard.be

200 OK, happy to comply, delete it all!! E
x
a
m
p
l
e
.
c
o
m

Legacy server doesn’t check for
the origin header, and simply

deletes the article!

CORS does not allow this

Brief Overview of CORS

65

OPTIONS http://api.example.com/articles/5

s
t
a
n
d
a
a
r
d
.
b
e

Origin: http://standaard.be
Access-Control-Request-Method: DELETE

200 ok

Access-Control-Allow-Origin: http://standaard.be
Access-Control-Allow-Methods: GET, POST, DELETE

E
x
a
m
p
l
e
.
c
o
m

DELETE http://api.example.com/articles/5

Origin: http://standaard.be

200 ok

Access-Control-Allow-Origin: http://standaard.be

CORS-enabled REST APIs

66

§  Server: add appropriate response headers

§  Client: Do we really have to deal with 6 new response

headers?
§  No!
§  Simply consume the API like a same-origin API

•  If the server grants your app access, the browser will take care of it

var cors = require('express-cors');
app.use(
 cors({ allowedOrigins: ['http://127.0.0.1:3000'] }));

Outline

67

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

Outline

68

§  The architecture of a single page application
§  Moving stuff from the server to the client

§  Authentication and authorization
§  In combination with a stateless API

§  Injection vulnerabilities and countermeasures
§  Getting rid of XSS, if you do it right

§  Remote API access
§  Unintentional through CSRF, and intentional using CORS

Conclusion

69

§  Single page applications are the next big thing
§  Great user experience, clear separation of concerns

§  Their architecture empowers the client-side
§  But with great power there must also come great responsibility

§  Security features are available in software
§  Choose wisely, and deploy vigorously

Securing Single Page Applications
Philippe De Ryck
philippe.deryck@cs.kuleuven.be

